
(e 2i~ = z2r -2) and Oxx, Oyy, ~xy (see Fig. 2) according to the same formulas for ~ = 0. The 

computations were performed for • = • = 2; y = 3-z; 3; z 2 = 1.001R 2. The solid lines in 

Figs. 1 and 2 are 7 = 1/3, the dashes are 7 = 3, and the superscripts j = 0, i, 2 correspond 
to the domains D2 +, D2- , DI-. 
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VIBRATIONS OF AN ELASTIC ORTHOTROPIC LAYER WITH A CAVITY 

A. O. Vatul'yan and A. Ya. Katsevich UDC 539.3 

In connection with the development of vibrational seismographic prospecting and defec- 
tometry at the present time, problems of analyzing wave fields in an elastic medium with 
cavities, cracks, and inclusions became extremely urgent. Let us note that certain mate- 
rials being tested are anisotropic (austenite class steels, composites, soils) which re- 
quires an appropriate mathematical model that takes account of the anisotropy of the mechani- 
cal properties. 

I. The steady-state antiplane waves are investigated in an orthotropic elastic layer 
of thickness h with a cylindrical cavity whose directrix is a smooth closed curve Zo. We 
consider that the vibrations in the layer are excited by a tangential load p(x I) applied to 
the boundary x 3 = h of the layer. The axes of elastic s)nnmetry agree with the coordinate 
axes, the component u 2 = u(xz, x3)exp(-i~t) of the displacement vector components is differ- 
ent from zero while similarly 012 = c66u, z, o23 = c44u,3 from the stress tensor components. 
After extraction of the time factor the boundary value problem has the form 

c~6u:m + c~4u,33 + po)~u : O, 

x3 : h, c4~u,3 : p(x i ) ,  x3 : O~ u : O, 

( x .  x~) ~ lo, c6~u,~nl + c~u,~n~ : 0 (1.  i )  

(nz, n 3 are components of the unit vector normal to the curve s external relative to the 
domain occupied by the elastic medium). Formulation of the problem is closed by the radia- 
tion condition for whose formulation the limit absorption principle is used. 

We introduce an auxiliary boundary value problem for the function U(xz, x3, gz, gs) 
into the consideration 

c~6U,~ § c~U~,33 § p~o~U : - - 5 ( x l  - -  ~1, x~ - -  ~ ) ,  

x3 : h, U,3 : 0, x3 : O, U : 0 .  (1.2) 

The solution of the problem (1.2) is constructed by using a Fourier integral transform within 
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the framework of the limit absorption principle 

sh ~xs 
<exp (~ (~ --  h)) + sh Xh exp (-- g~)>J da~, - -  exp {-- ~ )  ch ~x~ + ~ 

(~.3) 

where X = (va2 _ k2)i/2; v = C66/C##; k 2 = p~2/c~ ' the contour o is selected in conformity 
with the limit absorption principle and envelops the positive pole and the branch point of 
the integrand from below, and the negative from above [I]. Using the reciprocity theorem 
[2], it is easy to obtain a representation of the displacement field in the medium 

n 1 Zo [ Oz, (xl' m3' ~I, ~3) + e44n3 ~ (x,, x3, ~,  ~ ) j  u ( x  i ,  xz) dl~. ( 1 . 4 )  

I f  we de t e rmine  u ( x z ,  x~) f o r  (xz ,  x~) e s then  (1o4) pe rmi t s  f i n d i n g  t he  d i s p l a c e m e n t  
everywhere  w i t h i n  the  domain occup ied  by t he  e l a s t i c  medium. 

A boundary i n t e g r a l  e q u a t i o n  a long t he  boundary of  t he  domain s can be f o r m u l a t e d  on 
the  b a s i s  o f  ( 1 . 4 )  s i n c e  the  boundary c o n d i t i o n s  f o r  x~ = 0, h a r e  s a t i s f i e d  a u t o m a t i c a l l y  
because  of  the  s p e c i a l  s e l e c t i o n  of  t he  fundamenta l  s o l u t i o n  U(x~, x~, ~ ,  $~).  Let  us pass 
to  t he  l i m i t  (~z,  r + (Yz, Y~) e s in ( 1 . 4 ) .  Let  us i n t r o d u c e  a l o c a l  c o o r d i n a t e  sys tem 
in (Yz, Y~), l e t  us draw a c i r c l e  s of  r a d i u s  e > 0, and l e t  us f i n d  the  i n t e g r a l  over  in 
i t s  p a r t s  w i t h i n  the  o r i g i n a l  e l a s t i c  domain. E v a l u a t i n g  t he  i n t e g r a l s  e n c o u n t e r e d  h e r e  
and t a k i n g  i n t o  accoun t  t h a t  t h e  main c o n t r i b u t i o n  to  t he  l i m i t  v a l u e  i s  g iven  by t he  f i r s t  
component in ( 1 . 3 ) ,  we o b t a i n  the  f o l l o w i n g  boundary i n t e g r a l  e q u a t i o n  in the  l i m i t  

Bi 10 L 
(1.5) 

where the i n t e g r a l  over go is  understood in the Cauchy p r i n c i p a l  value sense. 

2. Numerical r e a l i z a t i o n  of the s ingu la r  i n t e g r a l  equation (1 .5)  is  on the basis of 
the method of boundary elements (MBE). Different modifications of the numerical realization 
of equations of the type (1.5) are elucidated in detail in [2, 3]. 

Let us use the simplest MBE modification by considering that a smooth boundary is sepa- 
rated into N z elements by rectangular segments, within whose limits u(x z, x 3) is constant 
while the nodes are the midpoints of the appropriate segments. Let (Xzk-, X3k-) and (Xlk +, 

X3k+) denote coordinates of the beginning and ending of the k-th element in conformity with 
the orientation selected. Then the node coordinates are found in the form Ylk = i/2(Xzk- + 

Xlk +), Y3k = i/2(X3k- + X~k+) �9 For u k = u(Ylk, Y3k) Eq. (1.5) reduces to a linear algebraic 
system 

N i 
t -=f u~ :-  b~ - -  ~ HT,~um, k = f ,  2 . . . . .  AT1; 

bh = .! p (x~) U (xi~: h, g1~, g3h) d x ,  
R i 

7L 

(2 .1)  

(2 .2)  

Let us note that formation of the system matrix is the main difficulty since the fundamental 
solution U(xz, x3, gz, g3) has no explicit representation and multiple integrals must be 
evaluated for the calculation Hkm~ Consequently, (2.2) requires preliminary simplification. 

Let us introduce the parametrization 

I § 
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Fig. i 

~ m = - ~ ( X + m - - X ~ - )  ( 2 . 3 )  

in the element ~m. Evaluating the integrals over t in (2.2) we obtain an expression for the 
coefficients of the linear algebraic system in the form of integrals over the contour o 

H~m ---- - ~ .  exp (ia~ (Y,h --  g,~)) ~-=1 {exp (--  i a ~ m t , )  (g (t~-m, a~) - -  
g 

- g (t2,~, ~ ) 1  + , x p  ( -  ,~,~,,~ - ~ I t~-~ I ) g (~ ,  ~,) - oxp ( * ~ , m -  

- ~ ] t;:.~ I ) g ( t;=,  =~) + 2 ~ p  (7~ ( y ~  - h)) ~h ~ ~h ( ~  --  *=~.~)  g (1, ~,)  + 
ch ~,h 

ch ~ (h -- Yah) sh (~'~arn + ial~31rn) ~ }  dczl ' 
+ 2 exp (--  ~Ysm) ch ~h 

%sgnt~lm@i~zlV~am t ,  Yah--gam, t~m=ga~--ysm'T-~rn.  
g (t, a~) ---- ;~ sg---~ t~-- m- ~-- ia~----~ ' ~sm 

(2.4) 

The integrals over the contour o in the complex plane in (2.3) are evaluated according to 
Gauss quadrature formulas. On the basis of computations using (1.5), the wave field is cQn- 
structed on the layer surface 

( F,~ ( h )  = 

N 1 

u (~, h) = --  TU (0, h, ~.~, h) --  ~J Fm (~) um 

lm C44n3m ~x---3 

(2.5) 

under the action of a concentrated load p(xl) = -T6(xl) at the origin. 

It is assumed in the computations that the cavity ~0 is an ellipse with center at the 
middle of the layer (0, h/2), its semiaxes al and a 3 are parallel to the coordinate axes, 
and the number of boundary elements is 8 and 16 while the elastic constants (in N/m 2) are 
c44 = 7.93"10 ~~ c66 = 5.05"i0 I~ T = 107. Displacement of the layer surface is computed 
according to (2.5) in the near zone for different values of the dimensionless parameter • = 
~h(p/c44) I/2 corresponding to the number of modes being propagated in the layer. Let us 
note that the cutoff frequencies for a continuous waveguide [I] are • = ~ (n - 1/2), n = i, 

, . . .  . 

The continuous line in Fig. 1 depicts Reu(~1, h), and the dashes Imu(gl, h) for the 
following parameter values: al/h = 0.i, a3/h = 0.2, where the number 1 corresponds to • = 
2, and 2 to • = 20. The waveguide is locked for the first value of • shifts decrease 
exponentially with distance from the vibrations source, and the wave field is localized in 
the neighborhood of the cavity. The second value of • corresponds to one mode being propa- 
gated. Let us note that the relative error in computing the displacement in both cases does 
not exceed 8% in going from NI = 8 to Nl = 16. 

On the basis of the relationships (1.5) and (2.5) the inverse problem of determining 
cavity parameters according to the wave field on a layer surface can be formulated. 

i. 
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PLASTIC MACRODEFORMATION WITH TWISTING UNDER PRESSURE FOR ALUMINUM 

WITH LOCALLY INTRODUCED GRAPHITE POWDER 

V. V. Neverov UDC 529.37 

A description of plastic deformation of crystalline solids is given within the scope 
of dislocation theory and solid mechanics. Physical theories which describe microdeforma- 
tion do not give a straightforward representation of a body as a whole since they cannot de- 
scribe macrodeformation. The problem of combining these theories can only be solved taking 
account of the hierarchy of the scale levels for deformation [i]. The combination is sup- 
ported by a weak experimental study of macroscopic deformation levels. As a rule deviation 
of macroscopic movements from laminar paths predicted by solid mechanics is small with nor- 
mal plastic deformation schemes. Therefore in order to observe them methods are required 
which make it possible not only to carry out recording in large fields, but also quite fine 
fields [2]. However, another way is possible, i.e., by increasing the level of plastic de- 
formation and property inhomogeneity for specimens. Development of macromovements is 
strengthened, which simplifies observing them. Macromovements and convective mass transfer 
in short cylindrical specimens of aluminum containing locally introduced graphite powder 
with plastic deformation in twisting under pressure are described and discussed. The study 
is also of interest in connection with the problem of preparing alloys by means of plastic 
deformation [3]. 

Study Procedure~ Tests were performed in a "shear under pressure" device [3] with a 
restraining ring which made it possible to increase specimen thickness h to 3 mm with a pis- 
ton diameter of 2R = 8 mm. After prior compression holes were drilled in the specimen paral- 
lel. to the axis of rotation and they were filled with graphite powder with a particle size 
<0.5 mm. In other tests the powder was distributed in a thin layer within a specimen over 
a surface perpendicular to the axis of rotation. Then the cell was closed by the piston, a 
compressive pressure of 1 GPa was applied, and the piston was rotated to the prescribed num- 
ber of rotations n. The rate of piston rotation ~ = 0.14 sec -I which excluded specimen heat- 
ing [4]. In order to provide parallelness for the specimen ends all of the device component 
surfaces transmitting a compressive force were ground for parallelness from both sides. Both 
cylinders, i.e., the cylinder with the piston and the cylinder at the end of which the spec- 
imen was placed in the restraining ring, were located in a guidance housing. The diameter 
of the housing exceeded that of the cylinders by not more than a = 4"i0 -2 mm. During tests 
the housing could rotate freely and therefore the slope of the cylinder axes did not exceed 

= 2a/H ~ 2'10 -3 , where H is cylinder height. Microsections were prepared from deformed 
specimens, the position of the graphite in them was observed from which material movement 
was assessed, and the microhardness was measured. Macromovements were compared with those 
calculated for a viscoplastic material model. 

Results of Observations. In the first piston rotations with n < i0 a column of graphite 
was transformed into a screw-shaped band and from its pitch the distribution of displacements 
through the specimen thickness was found (Fig. la, n = 8, graphite in one hole ~ = 1 mm at 
a distance from the axis r 0 = 3 mm; Fig. ib, the same as for la but before introducing the 
graphite the aluminum was deformed with n = 20; all photographs magnified by eight). 

Novokuznetsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. i, pp. 98-103, January-February, 1991. Original article submitted April 18, 1989; re- 
vision submitted July 20, 1989. 

0021-8944/91/3201-0093512.50 �9 1991 Plenum Publishing Corporation 93 


